
FontAnvil 0.4

Matthew Skala

July 1, 2021

Visit the FontAnvil home page at http://tsukurimashou.osdn.jp/fontanvil.php

FontAnvil user manual
Copyright © 2014, 2015 Matthew Skala

This document is free: you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your
option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; with-
out even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this document. If not,
see http://www.gnu.org/licenses/.

The above license for the document itself notwithstanding, the FontAnvil software described in this docu-
ment comprises the work of many different copyright holders who have licensed their contributions under
a variety of terms. The package as a whole is GPL, but some portions of it are also available under less
restrictive licenses. See the “Licensing” chapter of this document for more information.

Anvil clip-art by “Gerald G,” public domain.

2

http://tsukurimashou.osdn.jp/fontanvil.php
http://www.gnu.org/licenses/

Contents
Introduction 4

Building FontAnvil 5
From a version control checkout . 5
From a distribution package . 6
Special notes for Windows users . 6
Testing . 6
FontAnvil and Tsukurimashou . 7

Running FontAnvil 8
Command-line options . 8
Shebang . 9
Interactive mode and readline . 9

Data model 10
Fonts in memory . 10
Glyphs and slots . 10
Encodings . 12
The .notdef glyph . 13
The clipboard . 13
Look-up tables . 14
Syntax, semantics, round trips, and reproducibility . 14

The PE Script Language 17
Basic syntax . 17
Data types, variables, and scope . 17
Operators . 18
Control structures . 18

Function and variable reference 19
Built-in functions in FontForge and not in FontAnvil . 33
Built-in variables . 33

Licensing 34

3

Introduction
FontAnvil is a script language interpreter for manip-
ulating fonts. FontAnvil is substantially compatible
with the PfaEdit/FontForge native scripting lan-
guage, but FontAnvil is intended for non-interactive
use; for instance, invocation from the build sys-
tems of font packages like Tsukurimashou. To bet-
ter serve font package build systems in general and
Tsukurimashou in particular, FontAnvil has no GUI
and, to a reasonable extent, avoids dependencies on
external packages.

There was a program called PfaEdit for edit-
ing fonts in Postscript ASCII format (.pfa files).
PfaEdit development continued for many years, it
changed its name to FontForge, and it became the
de facto standard font editing program in the free
software community. FontForge is still under active
development to this day. The main focus of Font-
Forge is on interactive editing by GUI users, and
the proportion of its code and development effort
dedicated to such users is large and growing.

PfaEdit had a scripting language, which as far as
I know never had an official name. I will call it “PE
script” in the interests of neutrality; the traditional
filename extension for files in this language is .pe.
Development of PE script continued into the Font-
Forge era. Many free font packages use PE scripts
executed by FontForge to process font files non-
interactively in the context of a build system. I my-
self maintain the Tsukurimashou Project (http://
tsukurimashou.osdn.jp/), which processes fonts
using PE scripts on a massive scale (thousands of
script invocations per build).

Attempting to use a large and steadily-growing
GUI program as a non-interactive script language
interpreter is not always convenient. The many ex-
ternal libraries needed to build FontForge implicitly
become dependencies of any font package that needs
FontForge for its build system; and it is not easy to
get users to install them all correctly just to build
a font package. It is also hard to predict whether
a given version of FontForge will actually work for
a given script: with GUI enhancements, and even
social network features, as the strategic priorities

for FontForge development, it is frequently the case
that the stable and correct execution of scripts is
not at the top of the priority list, and bugs in script
processing are fixed late if at all.

FontAnvil is intended to be a stable PE script
interpreter for use by the Tsukurimashou Project,
to eliminate the dependence on a third-party pack-
age whose strategic goals are not closely aligned to
Tsukurimashou’s. FontForge may well stop sup-
porting PE script entirely in the future; if Tsukuri-
mashou is to survive, then Tsukurimashou cannot
be dependent on FontForge.

Only a small amount of effort is likely to be made ffby the maintainers of FontAnvil and FontForge to
retain compatibility with each other. The PE script
language is mature and unlikely to change in too
many drastic ways, so most scripts written for one
interpreter should run correctly on the other for a
long time, but already (about one year after the
first release of FontAnvil) each interpreter has mi-
nor features not supported by the other, and it is
likely they will continue to diverge. In this man-
ual, notes on known differences between FontAnvil
and FontForge are marked by an ff symbol in the
margin.

Of all the parts of a forge, an anvil is simple,
an anvil is trustworthy, and most of all, an anvil is
stable.

Matthew Skala
mskala@ansuz.sooke.bc.ca
http://ansuz.sooke.bc.ca/

4

http://tsukurimashou.osdn.jp/
http://tsukurimashou.osdn.jp/
http://ansuz.sooke.bc.ca/

Building FontAnvil
There are no immediate plans to build binary dis-
tribution packages; to use this code you will have to
build it yourself from sources.

From a version control checkout
FontAnvil is available by anonymous Subversion
checkout from http://svn.osdn.jp/svnroot/

tsukurimashou/trunk/. That is the main public
repository for FontAnvil source code, and checking
out from there is (at least for the moment, while
the code is in flux) the preferred way to obtain
FontAnvil. The Tsukurimashou repository as
a whole is also mirrored on Github at https:

//github.com/mskala/Tsukurimashou.git.
The version control system does not track some

files that would be included in a distribution tar-
ball but can be built automatically from source files
already under version control. That includes some
parts of the build system, such as “configure,” and
several source files that are automatically gener-
ated by Icemap. You must build Icemap before you
can build FontAnvil from a version control check-
out. If you have checked out the entire project, then
Icemap can be found in the icemap/ subdirectory,
sibling to fontanvil/.

To go this route you will also need to have
all the dependencies of Icemap installed, which
include but are not limited to BuDDy (available
at https://sourceforge.net/projects/buddy/)
and PCRE (available at http://www.pcre.org). It
should go without saying that these must be in-
stalled in such a way that they actually work. I’ve
had reports of Arch Linux, in particular, using a
nonstandard dynamic linker configuration such that
installing these libraries in the normal way will al-
low software using them (such as Icemap) to compile
but not run. Icemap’s configure script will attempt
to test for this condition and warn you, but it is not
foolproof.

If you wish to build from a version control check-
out, it is probably easiest to check out and configure
the entire Tsukurimashou Project even if you are
primarily interested in FontAnvil. These instruc-

tions assume you have done that. It is also assumed
you have a complete installation of the standard
GNU tools for building C programs, including the
gcc compiler, Autoconf, Automake, flex, and so on.
Many of these would not be needed for building from
a distribution package.

From the root of the Tsukurimashou checkout,
run:
autoreconf -i

This will create configure scripts and other in-
frastructure for all packages in the project. The -i

option tells autoreconf to automatically create any
missing scripts (notably, the one named missing)
that it thinks it needs.

The autoreconf command is likely to pro-
duce many error and warning messages, but it
should work nonetheless if the Autotools ver-
sions are suitable. In particular, note that when
autoreconf runs it may generate repeated “under-
quoted definition” warnings in relation to files in
/usr/share/aclocal or similar. This is the fault of
some other package on your system; it is not re-
lated to FontAnvil and should be harmless to the
FontAnvil build. The issue is that many pack-
ages (IMLIB is one common culprit) install M4 files
globally to provide customized Autoconf tests, and
then if those files are buggy, autoreconf complains
whenever it is invoked even if, as here, the buggy
files are not actually being used.

The top-level Tsukurimashou build will au-
tomatically take care of building Icemap and
FontAnvil in order to build Tsukurimashou, but as-
suming you don’t want to build the entire project
that way, the next step is to build Icemap:
cd icemap

./configure

make

The configure script supports --help and most
of the usual options; run that and make appropriate
modifications if you wish to customize the Icemap
build. Do not ignore error messages from configure.

After building Icemap, you can build FontAnvil.
The FontAnvil build will automatically detect

5

http://svn.osdn.jp/svnroot/tsukurimashou/trunk/
http://svn.osdn.jp/svnroot/tsukurimashou/trunk/
https://github.com/mskala/Tsukurimashou.git
https://github.com/mskala/Tsukurimashou.git
https://sourceforge.net/projects/buddy/
http://www.pcre.org

Icemap if it is in the sibling directory created by a
source control checkout; it should not be necessary
to install Icemap elsewhere first. However, running
Icemap requires several files of character-database
information from the Unicode Consortium. The
make download target will automatically go on the
Net using wget to download them; alternatively,
you could read the Makefile to find which files are
needed and install them some other way. Thus, the
simplest sequence of commands is:
cd ../fontanvil

./configure

make download

make

At this point FontAnvil should be ready to in-
stall with make install (root privilege may be nec-
essary for that), or to test with make check (test
suite is likely to fail at this level of development
progress).

From a distribution package
Distribution packages are available from the
FontAnvil home page at http://tsukurimashou.

osdn.jp/fontanvil.php. Be aware that these
packages will usually be out of date; and as a con-
sequence of Murphy’s Law, it is usual for me to dis-
cover many critical bugs immediately after releasing
a package.

Building from a package is much the same as
building from a version control checkout, minus the
need to run Autotools and Icemap. Most of the
automatically generated source files are included in
the package, so it is not necessary to have Unicode
character set files, Icemap, flex, and so on. Unpack
the tarball and do the usual Autotools build:
./configure

make

as root:

make install

Special notes for Windows users
I cannot realistically offer support for any plat-
forms except Linux and MacOS, which are the
ones for which I have access to testing ma-
chines. However, FontAnvil’s build system is
intended to be as portable as realistically pos-
sible, and as of shortly before version 0.4,
Jeremy Tan has reported some success at com-
piling FontAnvil under Windows. He has posted
unofficial Windows binaries of a patched 0.3
version at http://sourceforge.net/projects/

fontforgebuilds/files/fontanvil/ and indi-
cated some willingness to possibly continue updat-
ing them. I will also fold back into the mainline any
changes that are reasonably unintrusive and help
with building on Windows.

Spaces in pathnames, such as “C:\Program
Files,” are a serious problem for all Autotools-
based build systems. FontAnvil probably will not
be able to build if you locate the source code in a
path with a space in it. It may have some, but not
complete, ability to handle tools such as compilers
and LATEX that may be located in pathnames with
spaces. The configure scripts will attempt to de-
tect and warn you about such paths, but be aware
that some may cause problems even if configure

produces no warnings, and the build may be able to
compensate even if configure does produce warn-
ings.

All I can recommend is to try it and then at-
tempt to work around any problems that occur, by
moving things that break into paths that do not in-
clude spaces. I’d also like to emphasize that this is a
problem with all Autotools build systems, not only
FontAnvil’s. If you want to make a general prac-
tice of building Unix software on Windows, the only
course of action that will really work is to eliminate
filename spaces from your environment. You can-
not expect every software package to work around
Windows’s wacky filenames, and you cannot expect
FontAnvil to do so.

After FontAnvil is built there should be no prob-
lem with using it in an environment that has spaces
in pathnames; this is only an issue for the build.

Testing
FontAnvil includes a test suite, available by running
make check. Most of the tests are inherited from
FontForge, and the test suite had been unmain-
tained and unused in FontForge for several years
before FontAnvil picked it up. As a result, it does
not have good coverage, and some of the tests re-
quire files that I cannot legally ship. In some cases
I have not even been able to identify what the miss-
ing files are. If you run the test suite, you should
expect many of the tests to be skipped for missing
necessary files, and some of them to fail; and even if
by some chance you managed to get the entire suite
to pass, it is unlikely that that would really mean
the software was working properly. Having a better
test suite and software that passes it are long-term
goals for the project.

6

http://tsukurimashou.osdn.jp/fontanvil.php
http://tsukurimashou.osdn.jp/fontanvil.php
http://sourceforge.net/projects/fontforgebuilds/files/fontanvil/
http://sourceforge.net/projects/fontforgebuilds/files/fontanvil/

After running the tests, you can read the file
tests/coverage.log to see a summary of how
many of the PE script built-in functions were cov-
ered by the test suite. As of this writing, it is about
15%.

The option --enable-valgrind to configure

will make the test suite run inside Valgrind, if you
have that installed. Valgrind makes the tests much
slower, and (with the latest versions as of this writ-
ing) it causes at least one of them to fail on Mac
OS X through no fault of FontAnvil’s, because of
Valgrind’s lack of support for features used by the
Mac system libraries. For these reasons it is not the
default. However, if enabled it will produce a lot
more information in the log files about the many
ways in which FontAnvil abuses memory, and that
may be useful in debugging.

The fact that the test suite fails prevents make

distcheck from working. If you set the environ-
ment variable distcheck hack to 0.4 (or the new
version number, if I continue using this hack in fu-
ture versions), then the tests I expect to fail will be
disabled, so that make distcheck can be tricked
into accepting the package for distribution. In the
long run, this is probably a Bad Thing.

FontAnvil and Tsukurimashou
FontAnvil’s reason for existence is to support
Tsukurimashou, and its source control repository
is a subdirectory of the Tsukurimashou source con-
trol repository. FontAnvil does not require Tsukuri-
mashou to build. Tsukurimashou will look for
FontAnvil and use it if found, whether installed on
the system or inside a subdirectory of its own build.
The Tsukurimashou top-level build will also auto-
matically build Icemap and FontAnvil, as needed,
if started on a system without them and you don’t
override this behaviour. Note that this represents
a change from earlier version of Tsukurimashou,
which required FontAnvil to be built and installed
separately first.

All bug reports and other tickets for FontAnvil
should be filed through the Tsukurimashou
ticket tracker at http://osdn.jp/projects/

tsukurimashou/ticket/. Set the “Component”
field to “FontAnvil.”

As a courtesy to Github users, Tsukurimashou’s
entire source control system (including FontAnvil)
is mirrored in my Github account at https://

github.com/mskala. But osdn.jp remains the au-
thoritative public home of the project. You are

welcome to clone the repository—that is why it’s
there—but the semi-automated gateway from Sub-
version to Git is one-way. Do not file tickets for
FontAnvil on Github.

Do not file tickets for FontAnvil in the FontForge
tracker on Github! They are completely separate
pieces of software with different maintainers and dif-
ferent goals, notwithstanding the historically shared
code and notwithstanding that the FontForge peo-
ple have graciously given me developer status on
their project.

7

http://osdn.jp/projects/tsukurimashou/ticket/
http://osdn.jp/projects/tsukurimashou/ticket/
https://github.com/mskala
https://github.com/mskala

Running FontAnvil
FontAnvil is a script interpreter, so in normal op-
eration it is assumed you already have a script file
for it to interpret. Scripts are written in the PE
script language described elsewhere in this docu-
ment. Script files for FontAnvil are traditionally
given the filename extension .pe (for “PfaEdit”);
the extension .ff is also popular. Invoking the
FontAnvil interpreter then proceeds on more or less
the same lines as invoking any other script inter-
preter.

FontAnvil’s command-line syntax attempts to
achieve some degree of FontForge compatibility.
However, as of March 2014, FontForge contains
at least six different command-line parsers,∗ and
also sometimes hands its command lines off to
Python for parsing, so that options interact in
complicated ways with each other, with compile-
time settings, with operating system shebang
support and whether stdin is a terminal or pipe,
and so on. FontAnvil does not attempt to match
all of this behaviour exactly.

Command-line options
FontAnvil uses GNU getopt long only to parse
command-line arguments; this has the consequence
that long options may be specified with - (one hy-
phen) or -- (two hyphens) as the flag sequence;
using -- is the modern-day Unix convention, but
- may be preferable for FontForge compatibility.
Short options require a single hyphen. Options rec-
ognized are as follows.
-command 〈cmd〉, -c 〈cmd〉 Execute a PE script

command given literally on the command line.
FontAnvil will not look for a script file name
on the command line if this option is speci-
fied; all arguments starting with the first non-
option argument become arguments to the
script. Only the last invocation of this op-
tion will be used; unlike, for instance, Perl, it
is not possible to build up a multi-line script

∗https://github.com/fontforge/fontforge/issues/1277

by specifying -c multiple times.
-dry, -d Activate a poorly-documented “dry run

mode” built into some parts of the FontForge
PE script interpreter. This appears to be in-
tended for syntax checking. Most, but not
necessarily all, commands will be skipped.
I do not promise that new code added in
FontAnvil will necessarily respect this mode.

-help, -usage, -h Display a command-line option
help message, and terminate without execut-
ing a script.

-lang 〈cmd〉, -l 〈cmd〉 Specify interpreter lan-
guage. If this option is given with the value
“ff” then it will be ignored for compatibility.
Any other value is a fatal error.

-quiet, -q Reduce the verbosity of error, warn-
ing, and informational messages sent to stan-
dard error. This option may be specified more
than once to reduce the messages even fur-
ther. Note it may not function exactly like the
similarly-named option in FontForge. Font-
Forge often ignores the command-line option
and controls message verbosity in some mod-
ules by other means including compile-time
options, while FontAnvil attempts to unify all
verbosity control under this one option.

-verbose, -V Increase the verbosity of error, warn-
ing, and informational messages sent to stan-
dard error. This option may be specified more
than once to increase the messages even fur-
ther.

-nosplash, -script, -i Ignored for compatibility.
-version, -v Display a version and copyright ban-

ner, and terminate without executing a script.
-- Terminate option scanning. All subsequent ar-

guments will be treated as “non-option ar-
guments” (thus eligible to become script file
names or script arguments) even if they resem-
ble FontAnvil options. This would be what
you might use if for some reason you needed
to execute a script file that was named exactly
“-script.”

The first non-option command line argument

8

will be taken as the filename of a script file to
execute, unless the -c option or one of its syn-
onyms has overridden this behaviour. If the file-
name so specified is a single hyphen, or if there are
no non-option command line arguments at all, then
FontAnvil will enter interactive mode, reading com-
mands from standard input, as described later in
this chapter. Any command line arguments after
any script filename will be passed into the script in
the variables $1, $2, and so on—even in the cases
of -c and interactive mode.

Option scanning stops at the first non-option
argument encountered, which will usually be
treated as the script filename. Any arguments af-
ter that become arguments to the script (passed
in the variables $1, $2, etc.) and not options
for the FontAnvil interpreter. For this reason,
options must precede the script file name on the
FontAnvil command line. For maximum compat-
ibility, the -script option should be the last op-
tion if you use it at all, with the script file name
in a separate argument, not attached using =.

Shebang
FontAnvil may be invoked using the she-
bang convention. Place a line something like
“#!/usr/local/bin/fontanvil” at the top of a
file, and make the file executable, to create a script
that can be run like any other program and will
automatically use FontAnvil as the interpreter.

Details of shebang support vary depending on
the operating system. On most systems, the she-
bang line must specify an absolute path, and the
env program may be used to search for a command
name in the path to avoid hardcoding the absolute
location of the interpreter into a script. There are
also special considerations applicable to the length
of the interpreter path, arguments specified in the
shebang line, and so on.

FontAnvil does not have any special support for
shebang. In particular, it does not scan the script
to look for its own name in the shebang line. Since
the shebang line by definition starts with the com-
ment character #, it will be skipped as a comment.
FontAnvil just takes the script file name as an ar-
gument from the operating system, and (assuming
the script name does not happen to be something
weird that looks like an option) executes it, with
any remaining arguments becoming arguments to

the script. This is normally the desired behaviour.
However, be aware that it is a technical differ- ffence from FontForge, which attempts to determine
whether it was invoked via the shebang mechanism
and do smart things depending the answer, includ-
ing working around operating systems that support
this feature only poorly. FontForge may possibly
require options in the shebang line in at least some
cases, to select which scripting language it will use.

If you try to specify command-line options in
the shebang line, then depending on your operating
system’s support it is possible that FontAnvil will
not see the options even though FontForge would.
Some operating systems have unintuitive behaviour
regarding options specified in the shebang line; for
instance, combining all options into a single string
passed as one argument instead of splitting them
on spaces. For this reason, authorities on Unix of-
ten recommend against using options in the shebang
line at all; nonetheless, people continue doing it.

For maximum compatibility with both inter-
preters, I suggest writing shebang lines in PE script
files as you would write them for FontForge (in-
cluding mentioning the filename “fontforge”), and
then invoking FontAnvil on the files by other means
when desired. That way, FontForge will see the
interpreter name and any options it wants, and
FontAnvil will ignore them.

Interactive mode and readline
FontAnvil is intended primarily for non-interactive
use. However, if it is invoked without a script file
name, or with “-” (a single hyphen) as the script file
name, then it will enter a special interactive mode,
where it reads commands from standard input and
executes them immediately, line by line, rather than
reading from a script file. This can be convenient
for one-off editing tasks and testing the syntax and
behaviour of script commands.

If FontAnvil was compiled with the GNU Read-
line library and detects that standard input is
a terminal, then interactive mode will also offer
command-line editing and history using Readline.
The usual Readline keystrokes (such as up and down
arrows to recall earlier-typed command lines) be-
come available in this mode, and there are some
minor changes to the output formatting (in partic-
ular, the display of a command prompt) to make it
friendlier for interactive users.

9

Data model
Very many difficulties users have with font edit-
ing (both scripted and interactive) come from an
incomplete understanding of the data model in-
volved: what entities exist in a font and a font
editor and what relationships those entities have
with each other. The distinction between glyphs
and characters seems to be an especially frequent
cause of confusion. This chapter attempts to de-
scribe FontAnvil’s data model in a way that will be
useful to script programmers.

Fonts in memory
Because PE script was originally designed for con-
trolling a GUI font editor, it treats fonts as doc-
uments to be opened and closed, much as a GUI
editor might.

At any given time there exists a global set of
fonts that are open. These are stored in RAM.
Open fonts are associated with filenames, even if
the filenames do not actually exist on disk; the in-
terpreter will assign temporary filenames (usually
similar to “Untitled1.sfd”) to fonts that were cre-
ated in memory and not loaded from files. The file-
names should be unique (no more than one open
font sharing a filename), and it’s not easy to create
a situation where they are non-unique, but I sus-
pect that having distinct open fonts with duplicate
filenames may be technically possible and likely to
trigger bugs if attempted.

The set of open fonts is technically a sequence
(with a specific order), not an unordered set,
and the order is visible to scripts through the
$firstfont and $nextfont built-in variables, but
this fact is seldom important.

At most one of the open fonts may be the cur-
rent font. This state is global. Most font-editing
operations implicitly apply to the current font. The
Open() built-in function sets the current font, but
its exact behaviour is context-sensitive. If the spec-
ified filename is already an open font, then Open()

just sets the current font to that one. If the specified
filename is not already an open font, then Open()

loads it from disk, causing it to become an open

font, before setting the current font to that one.
When the interepreter starts up, the set of open

fonts is empty and there is no current font. In this
state, any operation that implicitly refers to the cur-
rent font will fail; scripts can only use a small subset
of the language to create or open a font and make
it current. The Close() built-in function removes
the current font from the set of open fonts (without
saving it to disk—that must be done as a separate
operation if saving is desired) and places the inter-
preter back into the state of having no current font.

The existence of a no-font state is a difference ffbetween PE script interpreters (both FontAnvil and
FontForge when run as a command-line interpreter)
and the FontForge GUI. The GUI insists on always
having at least one open font and always having
a current font, enforcing this rule by automatically
loading fonts from earlier editing sessions, automat-
ically creating a new empty font if the load fails,
choosing another open font to be current when one
is closed, and terminating the program when the
last font is closed.

Glyphs and slots
Here are two pictures of Don Quixote.∗

The pictures are different, but they are pictures
of the same fictional character. In the same way, we
can have several pictures of the same character in a
writing system.

a a a
What these three “a”s share is the character ;

what they do not share is the glyph. Fonts contain

∗Left: Gustave Doré, 1863. Right: Honoré Daumier,
1868.

10

collections of glyphs, concrete things, which are pic-
tures of characters, abstract things. It is often the
case that in any given font, each glyph corresponds
to exactly one character and vice versa; but there
are many important exceptions to that rule. To
understand how FontAnvil processes fonts it is im-
portant to bear in mind that fonts are collections of
glyphs, and glyphs are not the same thing as charac-
ters despite being closely connected with characters.

This glyph (the classic ff-ligature) is not associ-
ated with one character, but with a sequence of two
characters:

ff
There is no double-f character, as a separate ab-

stract entity distinct from just two ordinary “f”s in
a row, in the English language. There is no stan-
dard character code for such a thing.† Nonethe-
less a font for high-quality typesetting of English
must contain a glyph for this double-f entity that
is not quite a character. Despite such exceptions,
one glyph per character is true most of the time
in English. In some other languages, the conceit
of glyph-character equivalence breaks down entirely.
In Arabic, for example, many characters have four
or more visual forms requiring separate glyphs in a
font, depending on how they connect to neighbour-
ing characters.

FontAnvil represents a font in memory as in-
cluding a zero-based array of glyph slots. The array
is variable-sized, but it is a true array data struc-
ture, not a list: all slots from index 0 up to one
less than the number of slots exist as long as the
in-memory font does. Creating a new glyph means
overwriting the possibly-blank previous contents of
some slot. Destroying a glyph means filling the slot
with a blank glyph, but the slot continues to ex-
ist. Changing the number of slots can only be done
by increasing or decreasing the length of the array,
and encodings (described in the next section) may
constrain the number of slots.

Glyph slots in a font always have glyph numbers
which are their indices in the array. Glyphs in a
font cannot meaningfully be said to be in any spe-
cific order other than the order determined by the
array indices. Every glyph has a number, and ev-
ery number has a glyph slot. No two glyphs can

†Actually, there is one in Unicode, but you’re not sup-
posed to really use it; the details of that are beyond the
scope of this discussion.

have the same slot; two slots may contain identical
glyphs, or even a “reference” from one to the other,
but the two slots’ contents will not truly be the same
entity. A glyph slot might be blank, that is devoid
of outlines and other data, and people usually think
of such slots as not really being glyphs. But some
attributes of a glyph slot (such as its name) are re-
quired to always have non-null values, even on blank
slots.

FontAnvil’s in-memory glyph slots can be
blank but never truly empty. However, most on-
disk file formats do have a concept of a glyph
failing to exist at all. Blank slots are usually not
written when saving from memory to disk, and
loading a file from disk to memory that does not
fill all slots will usually leave the others blank.

Every open font has a selection, which specifies
a set of the glyph slots (more about glyph slots in
the next section). Many editing operations implic-
itly operate on the selection of the current font.
Although every open font has a selection, usually
only the selection of the current font is relevant.
Open fonts retain their selections through changes
in which open font is current.

The selection is actually a sequence, not a set,
of glyph slots. That means the slots in it can be
selected in a specific order. This distinction is rel-
evant in the FontForge GUI, where you can select
several glyphs in a specific order, open a “Metrics”
window, and have them come up in the order you
selected them. However, each glyph slot can appear
at most once in the selection, and the order of the
selection is seldom if ever observable or controllable
from the scripting language. It is usually better to
think of it as a set with no specific order, not as a
sequence.

The selection is applied at the level of glyph
slots. It is perfectly possible for the selection to in-
clude blank glyph slots, because it is defined as a set
of slots, not a set of non-blank glyphs. Nonetheless,
one often only cares about the non-blank glyphs,
and some commands for manipulating the selection
will automatically limit themselves to slots that are
not blank.

Glyph slot numbers may or may not be closely
connected to Unicode, ASCII, or other character
codes, depending on issues discussed in the next
section. It is important to be aware that glyph slot
numbers are not the same type of entity as charac-

11

ter codes, despite sometimes having equal numerical
values.

Encodings
Fonts do not exist solely to be edited with
FontAnvil. To be useful, a font must eventually
be saved in some format understandable by a word
processor or similar application; and the external
software must be able to associate the glyphs in the
font with the characters in text that will be type-
set using the font. There will necessarily exist some
code that associates numbers called code points with
the different characters that might appear in text,
and a font file must explicitly or implicitly describe
which code points go with which glyphs. It is worth
emphasizing that code points refer to characters,
not glyphs.

The ASCII code is familiar to many computer
users, especially in the English-speaking world, but
is inadequate for languages other than English. To-
day, nearly everybody uses a code called Unicode.
Unicode’s code points coincide with ASCII for all
the characters covered by ASCII; but it also cov-
ers many thousands of other characters. It is sup-
posed to be a universal code for all text in all hu-
man languages. But Unicode did not always exist
and its use was not always universal. Most com-
mon font formats are designed to also accomodate
character encoding schemes predating Unicode or
simply other than Unicode. Frequently, a font file
will include translation mappings for several dif-
ferent codes, in the hope that software using the
font can find its own preferred code among the
choices. There needs to be a way to translate code
points (which identify characters) into glyph num-
bers (which identify glyphs), even in cases like lig-
atures and variant glyphs where this translation is
more complicated than a simple one-to-one lookup.

FontAnvil includes several mechanisms for ad-
dressing these issues, but the most significant is that
of the encoding. The encoding is a property of each
font (global to the font) and describes a set of as-
sumptions and constraints about the relationships
between code points and glyph numbers.

Every glyph slot in a font always has a glyph
number, no two slots can have the same number,
and the set of glyph numbers that exist is always
the set of integers from 0 up to one less than the
number of glyphs in the font. Every code point

designates at most one glyph slot. But a glyph
slot might have zero, one, or more than one code
point; a code point might have no glyph slot; and
the set of code points that exist might not be a
simple interval of the integers. Nonetheless, the
font’s encoding may trigger the enforcement of
constraints that make the code point situation
less complicated.

Most of the possible values of the encoding field
are associated with standardized character codes de-
fined by external organizations. Each code defines
a meaning for a range of code points from 0 up to
some number that depends on the code. When the
encoding is associated with an externally standard-
ized code other than Unicode, FontAnvil enforces the
following constraints:

• There must be at least as many glyph slots as
there are code points in the code.

• Glyph slots in the range 0 through one less
than the number of code points in the code
correspond one-to-one with the code points.

• Any glyph slots with greater indices have no
code points.

The case of unencoded glyphs, those in glyph
slots beyond the end of the code point range speci-
fied by the encoding, is important. Glyphs like the
ff-ligature mentioned earlier, or the alternate forms
of letters in a script like Arabic, usually fall into
this category. When a word processor typesets text
using a font, it starts out by translating the code
points into glyphs one-for-one according to the basic
code points of the glyph. The result of that transla-
tion cannot contain unencoded glyphs. But the ba-
sic one-for-one translation of code points to glyphs is
only a starting point. Further processes can merge
and split glyphs so that more than one character
can be typeset with one glyph, one character can be
typeset with more than one glyph, and which glyph
goes with which character can be different in dif-
ferent contexts. These further processes can bring
unencoded glyphs into play. The encoding does not
specify the number of unencoded glyph slots that
may exist after the range of encoded glyphs. The
unencoded glyph slots may be manipulated by built-
in functions like SetCharCnt(); encoded glyph slots
may not be added or removed.

Each glyph slot has a property called the Uni-
code number. This is a code point (in the code that
is named Unicode), but I am going to call the num-

12

ber in this field just a “number” to distinguish it
from the code points that exist in non-Unicode en-
codings. When the encoding is one of the standard-
ized non-Unicode encodings, the constraint is en-
forced that the Unicode number must be the correct
translation (using the iconv library) of the glyph
number for encoded glyphs, or the null value of -
1 for unencoded glyphs. For example, if the font’s
encoding is KOI8-R (commonly used for Russian
text), then glyph slot number 241 is for the letter
“ya,” which looks like a backwards R. FontAnvil will
enforce the constraint that this slot’s Unicode num-
ber is 0x042F, which is the Unicode code point for
that letter. “The constraint is enforced” means that
if you try to change the value of the Unicode num-
ber field, the font’s encoding will be immediately
changed to Custom. Editing the Unicode numbers
is not compatible with keeping the encoding and its
fixed mapping.

But not every value for the font’s global encod-
ing field is associated with an external standard
other than Unicode. When the font’s encoding field
refers to some form of Unicode, or does not refer to
an external standard, then additional special con-
siderations apply; and in fact, these special cases
are the most popular and useful values for the en-
coding field.

When the encoding is set to Custom, few
encoding-related constraints are enforced. There
may be any number of glyph slots. Any slot may
have a Unicode number, or not, and there is not nec-
essarily any relationship between the Unicode num-
bers and the glyph slots.

There are two Unicode encoding options, Uni-
code (BMP) and Unicode (Full). These each behave
more or less like the non-Unicode standardized en-
codings. One difference is that it appears sometimes
possible to set the Unicode number of a glyph slot
such that it does not match its glyph number. This
may be a bug. FIXME investigate further - this de-
scription may possibly be simplified if Unicode and
non-Unicode turn out to really behave the same.

FIXME investigate and document the “Origi-
nal” encoding option.

Glyph slots have names. All glyph slots have
non-empty names, including blank slots, and all
names must be unique within a font. The names are
sometimes automatically assigned and may also be
manipulated by script commands; but constraints
(including the requirement for uniqueness) will be
enforced on such manipulation.

People who think they want to edit glyph slot
names are often wrong.

FIXME document name lists

The .notdef glyph
FIXME

The clipboard
There is a global entity called the clipboard, which
holds glyph data of the kind that might be stored
in glyph slots, such as outlines, anchors, and refer-
ences. The clipboard is like a font in that it can
store a bunch of slots’ worth of data, in a definite
order, but the clipboard is unlike a font in that the
slots do not have meaningful numbers and it does
not store slot attributes other than glyph data, such
as slot names and code points.

The usual way of using the clipboard is some-
what like using the clipboard in any common GUI
document editor: select some slots, do a cut or copy
operation, select some other slots (even in a differ-
ent font), and do a paste operation. Here is typical
code to copy the uppercase ASCII alphabet from an
existing font into a new font (leaving many things
in the new font empty or default, which may cause
problems later):
Open("font1.sfd");

Select(’A’,’Z’);

Copy();

New();

Select(’A’,’Z’);

Paste();

Save("font2.sfd");

One thing to be aware of is that Paste() always
writes into the selection, and so you must create a
nonempty selection for Paste() to be meaningful.
This differs from a word processor that can “insert”
text; FontAnvil treats a font as fixed framework of
glyph slots that can only be changed by overwrit-
ing. Inserting or deleting in the middle, in a way
that changes the number of slots that exist, would
disrupt the framework of the encoding and is rarely,
if ever, what you really want.

A glyph slot’s name is associated with the
glyph slot, not with the glyph data stored in the
slot. The slot name will not move with the glyph
data when the glyph data is cut and pasted into
a new slot. Unicode code points, and any other

13

encoding numbers, are also parts of the glyph
slot and will not move with cut and pasted glyph
data.

Look-up tables
FIXME

Syntax, semantics, round trips, and re-
producibility
It is a very common complaint from users of font
editors that someone loaded a file, saved it with-
out making any other changes, and “the result was
not the same.” Such complaints are often filed as
bugs in the FontForge bug tracker. Dealing with
them is not so easy as it might appear on the sur-
face, because what it means for two files to be “the
same” is not so simple as whether they contain the
same sequence of bytes. This section is intended
to clarify some of the relevant issues as they relate
to FontAnvil, and let users know what are and are
not reasonable expectations about the system’s be-
haviour.

Consider the two ASCII strings “1.5” and
“1.50000000000”; are those the same? As strings,
they are not. But if these strings are representa-
tions of a real number, they represent the same real
number. So if an editor loads one and saves the
other, the bytes in the file will have changed but
the number will not have changed. We can say that
the syntax has changed but the semantics have not.
These are terms borrowed from the field of linguis-
tics, where they describe different levels of abstrac-
tion in the study of a language: syntax refers to
questions like what sequences of words are gram-
matically valid sentences, while semantics refers to
the meanings of words.

Note that if ASCII strings represent floating
point numbers in low machine precision, we might
even have “1.50000000000” and “1.49999999999”
referring to the same number. The “number” that
matters is the machine-precision binary number;
two strings that both result in the same machine-
precision binary number are two strings with the
same meaning even if a human translating them in-
stead to exact real numbers would see a difference.

When FontAnvil, or any other font editor, loads
a file from disk, the file is converted into an in-
memory representation that is designed to store the
semantics of the font. When it saves the file, that
in-memory representation is converted into the disk

file format. As a result of this process, in general it
is reasonable to expect that loading and saving a file
will preserve the semantics of the data in the file,
but in general it is not reasonable to expect aspects
of syntax beyond semantics to be preserved.

The result of a round-trip through any editor
will in general be a file with the same semantics,
but not necessarily the same syntax. In general that
statement is true of all software that edits compli-
cated file formats, including word processors and
image editors as well as all font editors, not only
FontAnvil. For reasons unknown to me, users of
font editors seem especially inclined to be surprised
by the loss of non-semantic information and to re-
port it as a claimed “bug,” even though this is the
normal, expected, and pretty much inevitable be-
haviour of most computer software.

Further confusion may ensue when a file is
round-tripped through more than one on-disk for-
mat, because different formats may define different
semantics, sometimes at the ontological level; that
is, different formats may be based on different mod-
els of what are the important concepts in the prob-
lem domain. For instance, some font formats make
heavy use of “references,” which allow part of one
glyph to automatically incorporate another glyph.
Other font formats just do not contain references
at all. Some font formats use quadratic splines to
represent curves, while others use cubic splines, and
each of these is only approximately capable of rep-
resenting data from the other; a loss of precision
necessarily occurs when converting between them.
In general, information from one format may need
to be changed in irreversible semantic ways or even
discarded in order to convert a font to another for-
mat. Converting back and getting even the same
semantics, let alone the same syntax, is not always
a reasonable expectation. This issue is somewhat
analogous to what occurs when translating text suc-
cessively through two or more very different human
languages.

The FontAnvil in-memory format attempts to be
able to represent all the semantic information in all
the on-disk formats that FontAnvil supports; but it
still represents semantics only. Since FontAnvil de-
scends from FontForge which descends from PfaEdit
which was originally an editor for Postscript only,
the FontAnvil in-memory format may have some
bias toward a Postscript data model. It nonetheless
is intended to cover the semantics of all the formats
FontAnvil supports.

14

The FontAnvil SFD “native” format is a special
on-disk format intended to represent the semantics
of the in-memory format as accurately as possible;
so, by design, it should be possible to round-trip
between a font in memory and a font on disk in
SFD format, with no loss of semantics. However,
it is still possible to find syntactic distinctions in
SFD files that will not be preserved by loading and
saving. For instance, one can mess around with ex-
ternal software to re-arrange the sequence of glyphs
in an on-disk SFD file, only to have one’s tamper-
ing automatically undone the next time the file is
loaded and saved because the order of entries in the
file is not semantic and all that really counts is the
glyph numbers stored in the appropriate fields.

From this general picture there emerge several
points that describe how FontAnvil relates to the
syntax and semantics of font files.

• FontAnvil attempts to preserve semantics of
font files through a round trip of loading from
and saving to any one supported foreign for-
mat.

• FontAnvil attempts to preserve semantics of
font files through a round trip of loading a
foreign format, saving and loading the data
in SFD format, and then saving back to the
same foreign format.

• When loading from one foreign format and
saving to another, FontAnvil attempts to pre-
serve whatever semantics make sense in both
formats; but a round trip from one foreign for-
mat to another and back may not be lossless.

• FontAnvil does not attempt to preserve syn-
tax of any file format beyond the semantics
of the font inside, and in general it should be
expected that it usually will change syntax.

• FontAnvil does not attempt to preserve SFD
file semantics specific to features FontForge in-
cludes and FontAnvil does not; for instance,
pickled Python objects.

• FontAnvil does not support SFD-like files
written or edited by software other than
FontAnvil itself, except versions of FontForge
close to the Git repository version current as
of March 2014.

• FontAnvil does not support FontForge SFDir
(SFD split into a directory instead of a single
file) format.

The Debian Project has recently embarked on
a misguided project to demand “reproducibility”
of everything in their world, which they define as

having the ability to compile software many times
under different circumstances and get byte for byte
syntactically identical output. I call this extreme re-
producibility to allow distinguishing it from weaker
properties that might also be called reproducibility,
and to emphasize what an outlandish and cumber-
some form this one actually is. Several purported
reasons for extreme reproducibility to be desirable
are put forward by the project. The claim that
extreme reproducibility would be nice for security
is true, because multiple parties can independently
compile something, check that they got the same
result, and thus be sure that they are all either un-
compromised or compromised in the same way. But
not everything that would be nice to have is worth
what it costs.

Absent rigorous audits of everything else that
can go wrong, an extreme reproducibility demand
is far from a guarantee of security. Demanding
extreme reproducibility precludes embedding meta-
data about the circumstances of a build in the built
file; as soon as there’s so much as a timestamp in-
side a file, byte for byte comparisons break. Meta-
data is especially important and useful in fonts and
typesetting; and third-party file formats in this ap-
plication domain often have specific requirements
for timestamps and even per-save random ID num-
bers to be included in the files, making it difficult
to obey the file format definitions while also having
extreme reproducibility.

Randomized algorithms, and computations in
which multiple threads work simultaneously, may
often generate differing but in some sense close
enough results when run more than once; anything
of that nature is forbidden by extreme reproducibil-
ity. Cryptographic signature algorithms often re-
quire the opposite of extreme reproducibility, with
one-time nonce values that (on pain of destroying
the security guarantees) must never be the same
from one run to the next; any part of a build pro-
cess that involves such a signature must be carefully
segregated from any parts that are attempting to
guarantee extreme reproducibility.

With all that in mind, FontAnvil rejects the
extreme form of reproducibility, but embraces the
weaker common-sense reproducibility principle that
running the same process more than once should
produce functionally identical results.

• FontAnvil scripts are intended to be seman-
tically reproducible: running the same script
on the same inputs with the same FontAnvil

15

binary should produce output with the same
meaning.

• It is not the policy of the FontAnvil project to
make any attempt at syntactic reproducibil-
ity, it is not reasonable to expect output to
be byte for byte identical from one run to an-
other, and in general, the contrary should be
expected.

16

The PE Script Language
I did not invent the PE scripting language,

and the person who did never fully specified or
documented it. This documentation is based
partly on reverse engineering; is descriptive, not
prescriptive; and may not be complete, nor even
correct as far as it goes. The only way to be sure
what a PE script will really do is to run it and
find out, like Rikki-Tikki-Tavi.

Basic syntax
Scripts are text files. The traditional filename ex-
tension is .pe ; scripts in the wild have also been
seen using a .ff extension.

Comments may be marked in any of these ways:
hash for shell-like line comment

// two slashes for C++-like line comment

/*

C-style comment delimiters,

which may cover multiple lines.

*/

Newlines are syntactically significant, mark-
ing the ends of statements. To continue a state-
ment onto more than one line, you must use a
backslash to escape the newline.

FontForge processes line-continuation back-ff slashes in a separate abstraction layer before the
main interpreter sees them, which causes some ef-
fects that language users may not expect. For in-
stance, in FontForge a line-based comment started
by # or // may be continued onto a new line by a
backslash, without any # or // on the continuation
line. FontAnvil instead processes line-continuation
backslashes in the main tokenizer. They may not be
used to continue a line-based comment onto a new
line, and they may not be used in the middle of a
token (such as a function name) without having the
effect of splitting it into two tokens. However, they
may be used within string constants.

Semicolons also mark the ends of statements,
and may be used to join multiple statements onto
a single line. Semicolons at the ends of lines create
empty statements, which are ignored.

PE script is case sensitive for reserved words,
variable names, and built-in function names.

Data types, variables, and scope
Values have associated types. Variables can hold
values of arbitrary type and remember what type
they are. The types are:

• integer
• floating-point number
• Unicode code point (note that this is a distinct

data type from “integer”)
• string (of bytes, usually assumed to be UTF-8;

null terminated)
• array
• void
Syntax for constant values looks like this:

integers in decimal, hexadecimal, or

octal, using C syntax

123 # first digit nonzero for decimal

0x52 # 0x prefix for hex

041 # 0 prefix but not hex means octal

floating-point numbers indicated by the

decimal point; note the decimal point

is always . regardless of locale

123.45 # basic decimal float

4.9e5 # scientific notation, = 490000.0

Unicode code points are hexadecimal

numbers marked by 0u

0u1f4a9 # everybody’s favourite

strings have single or double quotes

’Single’

"double"

"foo\nbar" # \n for newline, in both

"foo\

17

bar" # backslash continues string past

a line break, this is "foobar"

"foo\\bar" # backslash makes other chars

literal, this is "foo\bar"

’"’ # same quote starts and ends string

unescaped newline also validly ends a

string, but don’t do this!

current FontAnvil supports it for

FontForge compatibility only

"foo

square brackets and commas for arrays

[1,2,3,0uABC,’foo’]

Literal string constants in PE script syntax
are limited to 256 characters. You can, however,
construct longer strings with multiple literals and
the concatenation operator.

The language seems intended to allow arrays
to have more than one dimension (i.e. each ele-
ment of an array may itself be an array) but such
arrays are currently broken in both FontForge
and FontAnvil, and usually cause the interpreter
to crash. I hope to fix this bug in FontAnvil, but
if I fix it and FontForge doesn’t, then any scripts
that make use of multidimensional arrays will be
incompatible with FontForge.

Operators
FIXME

Control structures
FIXME

18

Function and variable reference
ATan2
ATan2(y, x)

Returns the arctangent of y/x in radians, using
the signs of the arguments to choose the quadrant.
Note the order of the arguments, with y first. This
function mimics the behaviour of the C math library
atan2() function. This function may be used with-
out a loaded font.

AddAccent
AddAccent(accent, [pos-flags])

Perform one step in the process of building a
composite glyph from a base and an accent. This
involves three glyph slots:

• The base glyph, which might be a letter, like
e. This must exist somewhere in the font.

• The glyph slot that will contain the compos-
ite, which might be an accented-letter glyph
like ë. When AddAccent() is called, this slot
must be selected and must be the only thing
selected. It must already contain a reference
to the base glyph, and that must be the first
reference.

• The glyph slot containing the accent itself.
This must be specified as the first argument to
AddAccent(), either as a string which names
the accent glyph slot or as a Unicode code
point.

FontAnvil will attempt to place the accent in the
composite glyph slot, in an appropriate position rel-
ative to the base. Without the second argument, it
will choose that position depending on the Unicode
value of the accent. The second argument if spec-
ified may be one of the following integer flags. In
principle, it could be a bitwise OR of more than one
of them, but that makes very little sense.

flag position
0x100 Above
0x200 Below
0x400 Overstrike
0x800 Left

0x1000 Right
0x4000 Center Left
0x8000 Center Right

0x10000 Centered Outside
0x20000 Outside
0x40000 Left Edge
0x80000 Right Edge

0x100000 Touching

AddAnchorClass
AddAnchorClass(name, type, subtable)

Add an anchor class (for use with OpenType
GPOS features) to the current font. All three argu-
ments are required, and are strings. The first is the
name of the class; the second is one of "default",
"mk-mk", or "cursive", indicating the general kind
of attachment (mark to base, mark to mark, or cur-
sive, respectively); and the third is the name of the
lookup subtable in which the class will be used.

AddAnchorPoint
AddAnchorPoint(name, type, x, y, [lig-index])

Add an anchor point for mark attachment to
the currently selected glyph. It is an error to at-
tempt this if no, or more than one, glyph is selected.
The name argument specifies the class, such as was
used in AddAnchorClass(). The type should be one
of "mark", "basechar" (syn. "base"), "baselig"
(syn. "ligature"), "basemark", "cursentry"

(syn. "entry", "cursexit" (syn. "exit"), or
"default". The "default" choice attempts to
guess an appropriate type. The x and y arguments
specify the coordinates of the anchor. The final ar-
gument is required if and only if the type is base
ligature.

AddDHint
AddDHint(x1, y1, x2, y2, xu, yu)

19

Add a diagonal hint to any selected glyphs. A
diagonal hint is specified by three pairs of X-Y co-
ordinates: (x1, y1) and (x2, y2), which specify two
points on opposite sides of the diagonal stem, and
(xu, yu), which specifies a unit vector in the direc-
tion of the stem.

AddExtrema
AddExtrema([really])

Add extra points to spline segments (that is,
break them into smaller segments) in the selected
glyph slots to ensure that segments achieve their
maximum and minimum X and Y values at end-
points and not in between. This is a technical re-
quirement of some font formats.

If an extremum occurs very near but not at
the endpoint of a segment, then AddExtrema() will
by default skip processing that extremum in order
to avoid creating a very short segment. Specify a
nonzero integer for the optional argument really to
force adding extrema in such cases.

Rounding coordinates in a font to integer values
will often cause the splines to break the points-at-
extrema rule, and adding points at extrema will of-
ten break the integer-coordinates rule required by
the same font formats! I do not know of a sequence
of rounding, extrema-adding, and simplification op-
erations without manual intervention that will reli-
ably bring a font into compliance with both rules.

AddHHint
AddHHint(start,width)

Add a horizontal hint to any selected glyphs,
starting at X coordinate start and extending for dis-
tance width.

AddInstrs
AddInstrs(dest, replace, instrs)

Add Microsoft-style rasterization hints (“in-
structions”) to the font. These can be stored ei-
ther in a TrueType table, or in an individual glyph,
as determined by the string argument dest. If dest
is "fpgm" or "prep", then the instructions will go
in the table of that name; if it is an empty string
then the instructions will go in any selected charac-
ters; and otherwise, the string value will be taken
as the name of the glyph where the instructions will
go. Glyphs actually named “fpgm” or “prep” ap-
parently can only be specified by the selection mech-
anism.

The replace argument should be an integer; if

it is nonzero then the new instructions replace any
currently in the specified destination, and if it is
zero then they are appended to any already present.
The instrs argument should be a string containing
the instructions. This is code in a primitive assem-
bly language for the TrueType instructions byte-
code interpreter. The syntax defined by the True-
Type standard appears to be supported, with some
undocumented but optional extensions proprietary
to FontForge (and inherited by FontAnvil).

AddLookup
AddLookup(name, type, flags, features, [after])

Add a new lookup to the font. The new lookup
will be empty; other functions can be used to put
things in it.

The name is a string. The type is a string
from the following list, identifying the algo-
rithm used for looking up glyphs or glyph
sequences and the kind of substitution or return
value the lookup can produce: gpos context,
gpos contextchain, gpos cursive, gpos mark2base,
gpos mark2ligature, gpos mark2mark,
gpos marktobase, gpos marktoligature,
gpos marktomark, gpos pair, gpos single,
gsub alternate, gsub context, gsub contextchain,
gsub ligature, gsub multiple, gsub revesechain,
gsub single, kern statemachine, morx context,
morx indic, morx insert. The type also implicitly
specifies which table will contain the new lookup.

The flags argument is an integer formed by
adding these flag values, which are equivalent to
flag names in feature file syntax:

• 1: RightToLeft;
• 2: IgnoreBaseGlyphs;
• 4: IgnoreLigatures; and
• 8: IgnoreMarks.
The features argument expressed which Open-

Type features will invoke this lookup. It should
be an array value, each of whose entries is a two-
element array, containing as its first element a four-
letter string identifying the feature, and as its sec-
ond element another array of four-letter strings list-
ing the language systems in which that feature will
use this lookup.

The after argument, if specified, causes the new
lookup to be added after the lookup with the spec-
ified name. Otherwise, it will be added first in its
table.

20

AddLookupSubtable
AddLookupSubtable(lookup, name, [after])

Add a new subtable to a lookup. The lookup to
use is specified as the first argument, and the second
is the name for the new subtable. The optional after
argument causes the new subtable to be added after
the named subtable; otherwise, it will be first in the
lookup.

AddPosSub
AddPosSub(arg, arg, arg, [arg], [arg], [arg], [arg],
[arg], [arg], [arg])

AddSizeFeature
AddSizeFeature(arg, arg, [arg], [arg], [arg])

AddVHint
AddVHint(start,width)

Add a vertical hint to any selected glyphs, start-
ing at Y coordinate start and extending for distance
width.

ApplySubstitution
ApplySubstitution(script,lang,feature)

Apply OpenType-style substitutions to selected
glyphs. All three arguments should be strings of
up to four characters, which will be blank-padded
if shorter; the script and lang tags (but not fea-
ture) may also have the wildcard value * (a single
asterisk), which matches everything. FontAnvil will
apply any substitution rules in the current font for
the selected glyphs that match the specified script,
language, and feature (or ignoring the checks for
script or language if applying the wildcard); glyph
slots for which a substitution is found will be re-
placed with the contents of the slots specified by
the substitution rules.

Context-dependent substitutions appear to be
ignored, and it is not specified what happens if
the result of the subsitution rule is not exactly one
glyph.

Array
Array(size)

Creates and returns a value of array type, with
the given number of elements initialized to void.
This function may be used without a loaded font.

AskUser
AskUser(prompt, [default])

Asks the user a question. The string prompt is

written out to standard output, and the next line
from standard input is captured to become the re-
turn value. A line is terminated by a newline char-
acter, which will be included in the return value.
On error, or if the user enters a blank line, the re-
turn value will be default if specified, or an empty
string if not. This function may be used without a
loaded font.

If FontAnvil was compiled with readline sup- ffport, then AskUser() will allow command-line edit-
ing. This is a FontAnvil extension, not supported
by FontForge.

AutoCounter
AutoCounter()

Automatically generate “counter masks” for se-
lected glyphs.

AutoHint
AutoHint()

Automatically generate Adobe-style rasteriza-
tion hints for selected glyphs.

AutoInstr
AutoInstr()

Automatically generate Microsoft-style rasteri-
zation hints (that is, “instructions”) for selected
glyphs.

AutoKern
AutoKern(arg, arg, arg, arg)

AutoTrace
AutoTrace()

Automatically trace the background images of
the selected glyphs into outlines. In FontForge, this fffunction will only work if Autotrace or Potrace is in-
stalled where the interpreter can find it. FontAnvil
uses built-in code derived from Potrace instead of
calling an external program.

AutoWidth
AutoWidth(arg, arg, [arg])

BitmapsAvail
BitmapsAvail(sizes, [rasterized]. . .)

Choose the set of bitmap or greymap sizes
(“strikes”) that will be stored in the current font.
The sizes argument should be a list of integers;
these are either plain numbers of pixels (implic-
itly specifying one bit per pixel black and white

21

bitmaps); or bit-field encoded numbers specifying
both a pixel size (in the least significant 16 bits)
and a number of bits per pixel (in the higher bits).
For instance, 0x8000C specifies a 12 pixel greymap
font with eight bits per pixel.

If any sizes are specified that are not already
in the font, they will be added. If any sizes are not
specified but exist in the font, they will be removed;
so the final list of sizes will match what was speci-
fied. Any newly-created strikes will be filled in with
rasterized versions of the splines in the font, if ras-
terized is not specified or is a nonzero integer; the
new strikes will be blank if rasterized is zero.

BitmapsRegen
BitmapsRegen(sizes)

Render bitmaps from the splines in the current
font. The list of bitmap sizes (and bit depths, in the
case of greymap strikes) is specified as an array in
the same format as with BitmapsAvail(). All the
specified sizes must already exist. Their contents
will be replaced with the results of the rendering;
any other existing sizes are not changed.

BuildAccented
BuildAccented()

If any selected glyphs are accented letters (deter-
mined by Unicode code points, according to George
Williams’s undocumented rules), then replace them
with composite glyphs formed by references to base
and accent glyphs, in an unspecified way.

BuildComposite
BuildComposite()

If any selected glyphs fall into a category de-
scribed as “ligatures and whatnot” (determined
by Unicode code points, according to George
Williams’s undocumented rules), then replace them
with composite glyphs formed by references to other
glyphs, in an unspecified way.

BuildDuplicate
BuildDuplicate()

For all selected glyph slots, if the glyph slot is
associated with a Unicode code point that is an al-
ternate of some other Unicode code point according
to undocumented rules, and there is a glyph in the
other code point’s slot, then point the current glyph
slot to that other glyph, thereby creating a depre-
cated multi-slot glyph structure. What happens to
any former glyph in the current slot is not clear; the

code looks like it may leak the memory.
The intended use of this function seems to have

been mainly to build fonts with backward compat-
ibility to certain Chinese encodings (perhaps based
on early versions of Unicode without full coverage)
that placed glyphs in the PUA for characters that
are also (now) found at standard code points.

Do not use this function. It is kept in FontAnvil
(for the moment, quite possibly to be removed
some day) for backward compatibility, because some
scripts may depend on the built-in rules. Because
they are undocumented, those are not easy to re-
produce with other functions. Creating multi-slot
glyph structures in general is deprecated in the rel-
evant font standards and so should rarely be at-
tempted; and if you really need a multi-slot glyph
structure, the SameGlyphAs() function is a more
controllable way to build them.

CIDChangeSubFont
CIDChangeSubFont(arg)

CIDFlatten
CIDFlatten()

CIDFlattenByCMap
CIDFlattenByCMap(arg)

CIDSetFontNames
CIDSetFontNames(arg, arg, [arg], [arg], [arg], [arg])

CanonicalContours
CanonicalContours()

CanonicalStart
CanonicalStart()

Ceil
Ceil(x)

Returns dxe. That is the ceiling of x, or the least
integer greater than or equal to x. This function
may be used without a loaded font.

CenterInWidth
CenterInWidth()

ChangePrivateEntry
ChangePrivateEntry(arg, arg)

ChangeWeight
ChangeWeight([arg])

22

CharCnt
CharCnt()

Return the number of glyph slots in the current
font, including both encoded and unencoded slots.

CharInfo
CharInfo(arg, arg)

CheckForAnchorClass
CheckForAnchorClass(arg)

Chr
Chr(int)

Takes a single integer in the range -128 to 255
and returns a string containing that byte, folding
negative values into two’s complement notation.
Chr(array)

Takes an array of integers in the range -128 to
255 and returns a string consisting of those bytes.
This is the inverse of the Ord() function; see also
Utf8() and Ucs4(), which operate on Unicode
strings and code points instead of byte values.

This function may be used without a loaded font.
Note that the integers are byte values. Code points
U+0080 and beyond may be constructed by spelling
them out in UTF-8. It is also possible, but not
recommended, to construct strings that are invalid
UTF-8.

Since strings are stored in null-terminated form
internally, passing a zero, although not reported as
an error, will cause the string to terminate immedi-
ately before the zero. It is not possible to create a
string value in PE Script that meaningfully contains
a zero byte.

I have submitted a patch to FontForge, but asff of the current writing (June 2015), FontForge does
not document its support of zero and negative num-
bers, and documents but does not correctly imple-
ment array-valued arguments. FontAnvil behaves
as documented here.

Clear
Clear()

ClearBackground
ClearBackground()

ClearCharCounterMasks
ClearCharCounterMasks()

ClearGlyphCounterMasks
ClearGlyphCounterMasks()

ClearHints
ClearHints([arg])

ClearInstrs
ClearInstrs()

ClearPrivateEntry
ClearPrivateEntry(arg)

ClearTable
ClearTable(arg)

Close
Close()

CompareFonts
CompareFonts(arg, arg, arg)

CompareGlyphs
CompareGlyphs([arg], [arg], [arg], [arg], [arg],
[arg])

ControlAfmLigatureOutput
ControlAfmLigatureOutput(arg, arg)

ConvertByCMap
ConvertByCMap(arg)

ConvertToCID
ConvertToCID(arg, arg, arg)

Copy
Copy()

CopyAnchors
CopyAnchors()

CopyFgToBg
CopyFgToBg()

CopyGlyphFeatures
CopyGlyphFeatures(, . . .)

CopyLBearing
CopyLBearing()

CopyRBearing
CopyRBearing()

23

CopyReference
CopyReference()

CopyUnlinked
CopyUnlinked()

CopyVWidth
CopyVWidth()

CopyWidth
CopyWidth()

CorrectDirection
CorrectDirection(arg)

Cos
Cos(theta)

Returns the cosine of theta, which is measured
in radians. This function may be used without a
loaded font.

Cut
Cut()

DebugCrashFontForge
DebugCrashFontForge(. . .)

Causes FontAnvil [sic] to attempt to write to
a null pointer, which should crash the interpreter.
This may be of some use in debugging. Arguments
are ignored. Function name retained for compati-
bility. In FontForge, this function requires a loadedff font, but that limitation is removed in FontAnvil.

DefaultOtherSubrs
DefaultOtherSubrs()

Set the global store of “other subroutines,”
which are fragments of PostScript code used for spe-
cial purposes within PostScript fonts, to its default
contents specified by Adobe. This function may be
used without a loaded font.

DefaultRoundToGrid
DefaultRoundToGrid()

DefaultUseMyMetrics
DefaultUseMyMetrics()

DetachAndRemoveGlyphs
DetachAndRemoveGlyphs(, . . .)

DetachGlyphs
DetachGlyphs(, . . .)

DontAutoHint
DontAutoHint()

DrawsSomething
DrawsSomething(arg)

Error
Error(msg)

This function may be used without a loaded font.

Exp
Exp(x)

Compute the exponential function, ex. This
function may be used without a loaded font.

ExpandStroke
ExpandStroke(arg, arg, [arg], [arg], [arg], [arg])

Export
Export(arg, arg)

FileAccess
FileAccess(arg, arg)

This function may be used without a loaded font.

FindIntersections
FindIntersections()

FindOrAddCvtIndex
FindOrAddCvtIndex(arg, arg)

Floor
Floor(arg)

Returns bxc. That is the floor of x, or the great-
est integer less than or equal to x. This function
may be used without a loaded font.

FontImage
FontImage(arg, arg, arg, [arg])

FontsInFile
FontsInFile(arg)

This function may be used without a loaded font.

Generate
Generate(arg, arg, [arg], [arg], [arg], [arg])

24

GenerateFamily
GenerateFamily(arg, arg, arg, arg)

GenerateFeatureFile
GenerateFeatureFile(arg, arg)

GetAnchorPoints
GetAnchorPoints(, . . .)

GetCoverageCounts
GetCoverageCounts()

Print (to standard output) a table listing all the
built-in functions in the interpreter and how many
times each one has been called in the current run of
FontAnvil; this information may be useful in veri-
fying the coverage of an interpreter test suite. This
function may be used without a loaded font. This
function is a FontAnvil extension and is not avail-ff able in FontForge. The details of its operation may
change in some future version.

GetCvtAt
GetCvtAt(arg)

GetEnv
GetEnv(arg)

Return the string value of an environment vari-
able, or an empty string if the variable requested
does not exist. This function may be used without a
loaded font. In FontForge, requesting a non-existentff variable is an error.

GetFontBoundingBox
GetFontBoundingBox()

GetLookupInfo
GetLookupInfo(arg)

GetLookupOfSubtable
GetLookupOfSubtable(arg)

GetLookupSubtables
GetLookupSubtables(arg)

GetLookups
GetLookups(arg)

GetMaxpValue
GetMaxpValue(arg)

GetOS2Value
GetOS2Value(, . . .)

GetPosSub
GetPosSub(arg)

GetPref
GetPref(arg)

This function may be used without a loaded font.

GetPrivateEntry
GetPrivateEntry(arg)

GetSubtableOfAnchorClass
GetSubtableOfAnchorClass(arg)

GetTTFName
GetTTFName(arg, arg)

GetTeXParam
GetTeXParam(arg)

GlyphInfo
GlyphInfo(, . . .)

HFlip
HFlip(arg)

HasPreservedTable
HasPreservedTable(arg)

HasPrivateEntry
HasPrivateEntry(arg)

Import
Import(arg, arg, [arg])

InFont
InFont([arg])

Inline
Inline(arg, arg)

Int
Int(x)

Converts a real number or Unicode code point
value to an integer, by means of the C compiler’s
type coercion. In the case of real numbers, that
means x will be rounded toward zero. An integer
argument will be returned unchanged. This func-
tion may be used without a loaded font.

25

InterpolateFonts
InterpolateFonts(arg, arg, arg)

IsAlNum
IsAlNum(arg)

This function may be used without a loaded font.

IsAlpha
IsAlpha(arg)

This function may be used without a loaded font.

IsDigit
IsDigit(arg)

This function may be used without a loaded font.

IsFinite
IsFinite(arg)

This function may be used without a loaded font.

IsHexDigit
IsHexDigit(arg)

This function may be used without a loaded font.

IsLower
IsLower(arg)

This function may be used without a loaded font.

IsNan
IsNan(arg)

This function may be used without a loaded font.

IsSpace
IsSpace(arg)

This function may be used without a loaded font.

IsUpper
IsUpper(arg)

This function may be used without a loaded font.

Italic
Italic([arg], [arg], [arg], [arg], [arg], [arg], [arg],
[arg], [arg])

Join
Join()

LoadEncodingFile
LoadEncodingFile(arg, arg)

This function may be used without a loaded font.

LoadNamelist
LoadNamelist(arg)

This function may be used without a loaded font.

LoadNamelistDir
LoadNamelistDir([arg])

This function may be used without a loaded font.

LoadStringFromFile
LoadStringFromFile(arg)

This function may be used without a loaded font.

LoadTableFromFile
LoadTableFromFile(arg, arg)

Log
Log(x)

Returns lnx, that is the natural (base e) loga-
rithm. This is an error if x is zero, negative, or not
a number. This function may be used without a
loaded font.

LookupStoreLigatureInAfm
LookupStoreLigatureInAfm(arg, arg)

MMAxisBounds
MMAxisBounds(arg)

MMAxisNames
MMAxisNames()

MMBlendToNewFont
MMBlendToNewFont(, . . .)

MMChangeInstance
MMChangeInstance(arg)

MMChangeWeight
MMChangeWeight(, . . .)

MMInstanceNames
MMInstanceNames()

MMWeightedName
MMWeightedName()

MakeLine
MakeLine(, . . .)

MergeFeature
MergeFeature(arg)

26

MergeFonts
MergeFonts(arg, arg)

MergeKern
MergeKern(arg)

MergeLookupSubtables
MergeLookupSubtables(arg, arg)

MergeLookups
MergeLookups(arg, arg)

Move
Move(arg, arg)

MoveReference
MoveReference(arg, arg, arg, . . .)

MultipleEncodingsToReferences
MultipleEncodingsToReferences()

NameFromUnicode
NameFromUnicode(arg, arg)

This function may be used without a loaded font.

NearlyHvCps
NearlyHvCps([arg], [arg])

NearlyHvLines
NearlyHvLines([arg])

NearlyLines
NearlyLines([arg])

New
New()

This function may be used without a loaded font.

NonLinearTransform
NonLinearTransform(xexp, yexp)

Transform all the X and Y coordinates in the
selected glyphs according to two expressions given
as strings. The expressions are defined in a language
unique to this function, which can be summarized
as follows, from highest to lowest precedence class,
with evaluation from left to right within a class:

• constant reals, constant integers, and the vari-
ables x and y

• !, (), sin(), cos(), tan(), log(), exp(),
sqrt(), abs(), rint(), floor(), ceil()

• ^

• *, /, %
• +, -
• ==, !=, >=, >, <=, <=, <
• &&, ||
• ? : (C-style ternary question mark)
The FontForge code base supports this function, ffbut only as a compile-time option that is turned

off by default. Thus, most actual installations of
FontForge will not support it. It is uncondition-
ally enabled in FontAnvil. FontForge documents
x and y as being the only atomic values available
in the NonLinearTransform() expression language
(no integers or reals), but that is obviously incor-
rect. FontForge also incorrectly documents float()
as a function available in the language, instead of
floor().

Open
Open(arg, arg)

This function may be used without a loaded font.

Ord
Ord(str)

Converts a string to an array of integers in the
range 1 to 255, representing the byte values in the
string. Note 0 is not included because PE Script
strings cannot contain zero bytes. This is the inverse
of the Chr() function; see also Utf8() and Ucs4(),
which operate on Unicode strings and code points
instead of byte values.

Ord(str, pos)
With the optional pos argument, Ord() returns

a single integer instead of an array, representing the
byte value at the given zero-based index into the
string.

This function may be used without a loaded font.

Outline
Outline(arg)

OverlapIntersect
OverlapIntersect()

Paste
Paste()

PasteInto
PasteInto()

PasteWithOffset
PasteWithOffset(arg, arg)

27

PositionReference
PositionReference(arg, arg, arg, . . .)

PostNotice
PostNotice(arg)

This function may be used without a loaded font.

Pow
Pow(arg, arg)

This function may be used without a loaded font.

PreloadCidmap
PreloadCidmap(arg, arg, arg, arg)

This function may be used without a loaded font.

Print
Print(, . . .)

This function may be used without a loaded font.

PrintFont
PrintFont(arg, arg, [arg], [arg])

PrintSetup
PrintSetup(arg, arg, [arg], [arg])

This function may be used without a loaded font.

PrivateGuess
PrivateGuess(arg)

Quit
Quit([arg])

This function may be used without a loaded font.

Rand
Rand()

Return something called “a random integer.”
FontForge does not document what that means. Inff fact, in FontForge it means whatever comes out of
a call to the C library rand() function, and what
that actually is will vary depending on the host
platform. FontAnvil uses a bundled copy of the
SIMD-oriented Fast Mersenne Twister by Saito and
Matsumoto. The return values are uniformly dis-
tributed over the integers 0 to 231 − 1, that is 0 to
2147483647 (32-bit integers from the generator with
the high bit forced to zero to prevent signedness
problems). The generator is seeded from the system
clock and process ID when the interpreter starts.
The same generator instance is used throughout
FontAnvil wherever random numbers are called for,
including in operations that do not obviously in-

volve randomization (as a result of UUID genera-
tion and such). Thus, scripts should not depend on
its producing a consistent sequence of numbers.

This function may be used without a loaded font.
See RandReal() for a related function that may be
of use.

RandReal
RandReal()

Return a pseudorandom real number in the in-
terval [0, 1). This uses the same underlying genera-
tor as Rand(), which see; but its output range may
be more convenient. In principle, RandReal() may
also have slightly better precision, because it uses
all 32 bits of the PRNG output. This function is ffa FontAnvil extension and is not available in Font-
Forge. This function may be used without a loaded
font.

ReadOtherSubrsFile
ReadOtherSubrsFile(arg)

This function may be used without a loaded font.

Real
Real(arg)

This function may be used without a loaded font.

Reencode
Reencode(arg, arg)

RemoveAllKerns
RemoveAllKerns()

RemoveAllVKerns
RemoveAllVKerns()

RemoveAnchorClass
RemoveAnchorClass(arg)

RemoveDetachedGlyphs
RemoveDetachedGlyphs(, . . .)

RemoveLookup
RemoveLookup(arg, arg)

RemoveLookupSubtable
RemoveLookupSubtable(arg, arg)

RemoveOverlap
RemoveOverlap()

28

RemovePosSub
RemovePosSub(arg)

RemovePreservedTable
RemovePreservedTable(arg)

RenameGlyphs
RenameGlyphs(arg)

ReplaceCharCounterMasks
ReplaceCharCounterMasks(arg)

ReplaceCvtAt
ReplaceCvtAt(arg, arg)

ReplaceGlyphCounterMasks
ReplaceGlyphCounterMasks(arg)

ReplaceWithReference
ReplaceWithReference([arg], [arg])

Revert
Revert()

Reload the current font from its file on disk
(which must exist).

RevertToBackup
RevertToBackup()

Reload the current font from its backup file (the
one ending in ˜, not a numbered revision), if one ex-
ists. This is only meaningful for fonts that are SFD
files for which a backup was created by a previous
Save().

Rotate
Rotate(arg, [arg], [arg])

Round
Round(arg)

Returns the nearest integer to x, with ties bro-
ken by returning the nearest even integer. This
behaviour may differ on nonstandard systems that
lack the fesetround() library function. This func-
tion may be used without a loaded font.

RoundToCluster
RoundToCluster([arg], [arg])

RoundToInt
RoundToInt(arg)

Round coordinates in selected glyphs. See
Round() for rounding a real number to an integer.

SameGlyphAs
SameGlyphAs()

Save
Save([arg], [arg])

SaveTableToFile
SaveTableToFile(arg, arg)

Scale
Scale(arg, arg, [arg], [arg])

ScaleToEm
ScaleToEm(arg, arg)

Select
Select(, . . .)

SelectAll
SelectAll()

SelectAllInstancesOf
SelectAllInstancesOf(, . . .)

SelectBitmap
SelectBitmap(arg)

SelectByColor
SelectByColor(arg)

SelectByColour
SelectByColour(arg)

SelectByPosSub
SelectByPosSub(arg, arg)

SelectChanged
SelectChanged(arg)

SelectFewer
SelectFewer(arg, . . .)

SelectFewerSingletons
SelectFewerSingletons(arg, . . .)

SelectGlyphsBoth
SelectGlyphsBoth(arg)

29

SelectGlyphsReferences
SelectGlyphsReferences(arg)

SelectGlyphsSplines
SelectGlyphsSplines(arg)

SelectHintingNeeded
SelectHintingNeeded(arg)

SelectIf
SelectIf(, . . .)

SelectInvert
SelectInvert()

SelectMore
SelectMore(arg, . . .)

SelectMoreIf
SelectMoreIf(arg, . . .)

SelectMoreSingletons
SelectMoreSingletons(arg, . . .)

SelectMoreSingletonsIf
SelectMoreSingletonsIf(arg, . . .)

SelectNone
SelectNone()

SelectSingletons
SelectSingletons(, . . .)

SelectSingletonsIf
SelectSingletonsIf(, . . .)

SelectWorthOutputting
SelectWorthOutputting(arg)

SetCharCnt
SetCharCnt(arg)

SetCharColor
SetCharColor(arg)

SetCharComment
SetCharComment(arg)

SetCharCounterMask
SetCharCounterMask(arg, arg, . . .)

SetCharName
SetCharName(arg, arg)

SetFeatureList
SetFeatureList(arg, arg)

SetFondName
SetFondName(arg)

SetFontHasVerticalMetrics
SetFontHasVerticalMetrics(arg)

SetFontNames
SetFontNames(arg, arg, [arg], [arg], [arg], [arg])

SetFontOrder
SetFontOrder(arg)

SetGasp
SetGasp(, . . .)

SetGlyphChanged
SetGlyphChanged(arg)

SetGlyphClass
SetGlyphClass(arg)

SetGlyphColor
SetGlyphColor(arg)

SetGlyphComment
SetGlyphComment(arg)

SetGlyphCounterMask
SetGlyphCounterMask(, . . .)

SetGlyphName
SetGlyphName(, . . .)

SetGlyphTeX
SetGlyphTeX(arg, arg, arg, [arg])

SetItalicAngle
SetItalicAngle(arg, arg)

SetKern
SetKern(arg, arg, arg)

SetLBearing
SetLBearing(arg, arg)

30

SetMacStyle
SetMacStyle(arg)

SetMaxpValue
SetMaxpValue(arg, arg)

SetOS2Value
SetOS2Value(, . . .)

SetPanose
SetPanose(arg, arg)

SetPref
SetPref(arg, arg, arg)

This function may be used without a loaded font.

SetRBearing
SetRBearing(arg, arg)

SetTTFName
SetTTFName(arg, arg, arg)

SetTeXParams
SetTeXParams(, . . .)

SetUnicodeValue
SetUnicodeValue(arg, arg)

SetUniqueID
SetUniqueID(arg)

SetVKern
SetVKern(arg, arg, arg)

SetVWidth
SetVWidth(arg, arg)

SetWidth
SetWidth(arg, arg)

Shadow
Shadow(arg, arg, arg)

Shell
Shell(command)

Execute a command in the system shell, via the
C library system(3) call. Returns the integer re-
turn value from doing so. All the usual security
considerations associated with shell interfaces ap-
ply. This function may be used without a loaded
font. This function is a FontAnvil extension and isff

not available in FontForge.

Simplify
Simplify(, . . .)

Sin
Sin(theta)

Returns the sine of theta, which is measured
in radians. This function may be used without a
loaded font.

SizeOf
SizeOf(arg)

This function may be used without a loaded font.

Skew
Skew(arg, arg, [arg], [arg])

SmallCaps
SmallCaps([arg], [arg], [arg], [arg])

Sqrt
Sqrt(arg)

This function may be used without a loaded font.

StrJoin
StrJoin(arg, arg)

This function may be used without a loaded font.

StrSplit
StrSplit(arg, arg, arg)

This function may be used without a loaded font.

Strcasecmp
Strcasecmp(arg, arg)

This function may be used without a loaded font.

Strcasestr
Strcasestr(arg, arg)

This function may be used without a loaded font.

Strftime
Strftime(format, [isutc, [locale]])

Generate a formatted time string, as the system
strftime() function would do. If isutc is present
and 0, then the local time zone will be used; other-
wise, it will be UTC. If locale is specified as a string,
then that locale will be used; otherwise strftime()
will be called in the portable “C” locale. In this re-
spect FontAnvil differs from from FontForge, which ffuses the current locale configured by environment

31

variables as the default. The change is meant to en-
sure that scripts will behave predictably on all sys-
tems unless they explicitly require localization and
handle it themselves. This function may be used
without a loaded font.

Strlen
Strlen(arg)

This function may be used without a loaded font.

Strrstr
Strrstr(arg, arg)

This function may be used without a loaded font.

Strskipint
Strskipint(arg, arg)

This function may be used without a loaded font.

Strstr
Strstr(arg, arg)

This function may be used without a loaded font.

Strsub
Strsub(arg, arg, arg)

This function may be used without a loaded font.

Strtod
Strtod(arg)

This function may be used without a loaded font.

Strtol
Strtol(arg, arg)

This function may be used without a loaded font.

SubstitutionPoints
SubstitutionPoints()

Tan
Tan(theta)

Returns the tangent of theta, which is measured
in radians. This function may be used without a
loaded font.

ToLower
ToLower(arg)

This function may be used without a loaded font.

ToMirror
ToMirror(arg)

This function may be used without a loaded font.

ToString
ToString(arg)

This function may be used without a loaded font.

ToUpper
ToUpper(arg)

This function may be used without a loaded font.

Transform
Transform(arg, arg, arg, arg, arg, arg)

TypeOf
TypeOf(arg)

This function may be used without a loaded font.

UCodePoint
UCodePoint(int)

Cast an integer to the special “Unicode code
point” data type required by some other scripting
functions. This function may be used without a
loaded font.

Ucs4
Ucs4(str)

Decode a UTF-8 string into an array of integers
(not actually UCS4, despite the name) expressing
the code points in the string. Handling of illegal
UTF-8, including encoded surrogate code points, is
undefined. This is the inverse of the Utf8() func-
tion; see also Chr() and Ord(), which operate on
byte values instead of code points. This function
may be used without a loaded font.

UnicodeAnnotationFromLib
UnicodeAnnotationFromLib(arg)

This function may be used without a loaded font.

UnicodeBlockEndFromLib
UnicodeBlockEndFromLib(arg)

This function may be used without a loaded font.

UnicodeBlockNameFromLib
UnicodeBlockNameFromLib(arg)

This function may be used without a loaded font.

UnicodeBlockStartFromLib
UnicodeBlockStartFromLib(arg)

This function may be used without a loaded font.

UnicodeFromName
UnicodeFromName(arg)

32

This function may be used without a loaded font.

UnicodeNameFromLib
UnicodeNameFromLib(arg)

This function may be used without a loaded font.

UnicodeNamesListVersion
UnicodeNamesListVersion()

This function may be used without a loaded font.

UnlinkReference
UnlinkReference()

Utf8
Utf8(codes)

Encode an array of integers in the range 0 to
0x10FFFF, or a such single integer, into a UTF-8
string. Surrogate code point values will result in an
illegal UTF-8 result, and zeroes will prematurely
terminate the output. This is the inverse of the
Ucs4() function; see also Chr() and Ord(), which
operate on byte values instead of code points. This
function may be used without a loaded font.

VFlip
VFlip(arg)

VKernFromHKern
VKernFromHKern()

Validate
Validate([arg])

Wireframe
Wireframe(arg, arg, arg)

WorthOutputting
WorthOutputting(arg)

WriteStringToFile
WriteStringToFile(arg, arg, arg)

This function may be used without a loaded font.

WritePfm
WritePfm(arg)

Built-in functions in FontForge and not
in FontAnvil
LoadPlugin()ff LoadPluginDir()

Removed because FontAnvil does not use plug-
ins.
LoadPrefs() ffSavePrefs()

Removed because, to ensure consistent results
from scripts, FontAnvil does not store per-user
“preferences” between runs. For the moment, other
functions related to FontForge-style preference vari-
ables remain in the language, but the values of these
variables are initialized to defaults at the start of
each script run.
PrintFont() ffPrintSetup()

Removed because of the grossly disproportion-
ate amount of unportable interfacing code needed
to talk to the native printing interfaces on each op-
erating system. Some future version may support
a more portable printing feature, likely involving
writing to files instead of interfacing directly to the
printer drivers.
Autotrace() ffbAutoCounter()

bDontAutoHint()

bSubstitutionPoints()

BuildComposit()

GetPrefs()

Misspellings of documented function names
which FontForge once supported by mistake and
now retains for compatibility with hypothetical
deployed scripts that might have depended upon
them. No such deployed scripts are actually known
to exist. FontAnvil does not retain the misspelled
names.
AddATT() ffDefaultATT()

PrivateToCvt()

RemoveATT()

SelectByATT()

Deprecated functions that only produce er-
ror messages in FontForge; removed entirely in
FontAnvil.

Built-in variables

33

Licensing
George Williams put most of his work on PfaEdit, and subsequently FontForge, under licensing notices
such as this one:

Copyright © [years] by George Williams
Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of conditions

and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list of

conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

The name of the author may not be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

That is what is commonly called a Three-Clause BSD License. There were many subsequent contrib-
utors to the software (see the AUTHORS file in the root of a distribution tarball or version control checkout)
and many of them were content to keep the same license terms in place, with or without adding their
own names and years to the copyright notice at the top.

However, some contributors have placed additional restrictions on their work, most notably GNU
GPL3+ licenses like this one:

Copyright © [year] [contributor’s name]
This program is free software: you can redistribute it and/or modify it under the terms of

the GNU General Public License as published by the Free Software Foundation, either version
3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program. If not, see http://www.gnu.org/licenses/.

The Free Software Foundation takes the position that the three-clause BSD license is GPL-compatible,∗

meaning that it is legally permissible for a package that is under GPL3+ as a whole to include material

∗http://www.gnu.org/licenses/license-list.html#ModifiedBSD

34

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/license-list.html#ModifiedBSD

that is under three-clause BSD. The presence of GPL3+ contributions, however, forces the package as a
whole to be licensed GPL3+. That being the case, both FontForge and FontAnvil should be treated as
GPL3+, just with the awareness that some files may also be used separately from the package under the
less restrictive three-clause BSD license.

It is the current practice of the FontForge project to encourage contributors of new material to apply
GPL3+ notices to any new files, but retain the BSD notices on files that already have those. There was
an incident in which someone tried to apply a patch someone else had written to a currently BSD-licensed
file in FontForge—with the patch to become roughly 1/1000th of the file’s total volume. The author of
the patch demanded that the whole file should become GPL3+, overriding the BSD notice on it and the
apparent intentions of the previous contributors to that file. I would like to avoid such incidents.

A few files have other distribution terms. In particular, some parts of the build system have very
permissive licenses.

FontForge attempts to maintain a list of all the licensing terms of all the files in the project; but their
list has never been up to date, cannot reasonably be expected to ever be up to date nor to stay up to
date even if it ever is at one moment, currently contains incorrect information, and seems unnecessary. I
do not propose to make such a list for FontAnvil.

The current licensing policy for FontAnvil is substantially the same as that of FontForge:
• FontAnvil as a whole is covered by the GPL version 3, or any later version.
• Some files in FontAnvil are also available under less restrictive licenses. You must consult the notices

in those files for details.
• I will place GPL3+ notices on new files I create within FontAnvil, and encourage others to do the

same.
• I will leave files with existing broader-than-GPL notices under their existing notices (possibly adding

my own name and year copyright lines), and encourage others to do the same.
• I will not accept contributions that entail drastic changes to the licensing status of work done by

persons other than the contributor, and I will discourage the submission of such contributions.
Finally, note that although FontAnvil is associated with the Tsukurimashou Project, its licensing is

not identical to that of other things included in the Tsukurimashou Project.

35

Index
AddAccent(), 19
AddAnchorClass(), 19
AddAnchorPoint(), 19
AddDHint(), 19
AddExtrema(), 20
AddHHint(), 20
AddInstrs(), 20
AddLookup(), 20
AddLookupSubtable(), 21
AddPosSub(), 21
AddSizeFeature(), 21
AddVHint(), 21
ApplySubstitution(), 21
Array(), 21
AskUser(), 21
ATan2(), 19
AutoCounter(), 21
AutoHint(), 21
AutoInstr(), 21
AutoKern(), 21
AutoTrace(), 21
AutoWidth(), 21

BitmapsAvail(), 21
BitmapsRegen(), 22
BuildAccented(), 22
BuildComposite(), 22
BuildDuplicate(), 22

CanonicalContours(), 22
CanonicalStart(), 22
Ceil(), 22
CenterInWidth(), 22
ChangePrivateEntry(), 22
ChangeWeight(), 22
CharCnt(), 23
CharInfo(), 23
CheckForAnchorClass(), 23
Chr(), 23
CIDChangeSubFont(), 22
CIDFlatten(), 22
CIDFlattenByCMap(), 22
CIDSetFontNames(), 22

Clear(), 23
ClearBackground(), 23
ClearCharCounterMasks(), 23
ClearGlyphCounterMasks(), 23
ClearHints(), 23
ClearInstrs(), 23
ClearPrivateEntry(), 23
ClearTable(), 23
Close(), 23
CompareFonts(), 23
CompareGlyphs(), 23
ControlAfmLigatureOutput(), 23
ConvertByCMap(), 23
ConvertToCID(), 23
Copy(), 23
CopyAnchors(), 23
CopyFgToBg(), 23
CopyGlyphFeatures(), 23
CopyLBearing(), 23
CopyRBearing(), 23
CopyReference(), 24
CopyUnlinked(), 24
CopyVWidth(), 24
CopyWidth(), 24
CorrectDirection(), 24
Cos(), 24
Cut(), 24

DebugCrashFontForge(), 24
DefaultOtherSubrs(), 24
DefaultRoundToGrid(), 24
DefaultUseMyMetrics(), 24
DetachAndRemoveGlyphs(), 24
DetachGlyphs(), 24
DontAutoHint(), 24
DrawsSomething(), 24

Error(), 24
Exp(), 24
ExpandStroke(), 24
Export(), 24

FileAccess(), 24
FindIntersections(), 24

36

FindOrAddCvtIndex(), 24
Floor(), 24
FontImage(), 24
FontsInFile(), 24

Generate(), 24
GenerateFamily(), 25
GenerateFeatureFile(), 25
GetAnchorPoints(), 25
GetCoverageCounts(), 25
GetCvtAt(), 25
GetEnv(), 25
GetFontBoundingBox(), 25
GetLookupInfo(), 25
GetLookupOfSubtable(), 25
GetLookups(), 25
GetLookupSubtables(), 25
GetMaxpValue(), 25
GetOS2Value(), 25
GetPosSub(), 25
GetPref(), 25
GetPrivateEntry(), 25
GetSubtableOfAnchorClass(), 25
GetTeXParam(), 25
GetTTFName(), 25
GlyphInfo(), 25

HasPreservedTable(), 25
HasPrivateEntry(), 25
HFlip(), 25

Import(), 25
InFont(), 25
Inline(), 25
Int(), 25
InterpolateFonts(), 26
IsAlNum(), 26
IsAlpha(), 26
IsDigit(), 26
IsFinite(), 26
IsHexDigit(), 26
IsLower(), 26
IsNan(), 26
IsSpace(), 26
IsUpper(), 26
Italic(), 26

Join(), 26

LoadEncodingFile(), 26
LoadNamelist(), 26
LoadNamelistDir(), 26

LoadStringFromFile(), 26
LoadTableFromFile(), 26
Log(), 26
LookupStoreLigatureInAfm(), 26

MakeLine(), 26
MergeFeature(), 26
MergeFonts(), 27
MergeKern(), 27
MergeLookups(), 27
MergeLookupSubtables(), 27
MMAxisBounds(), 26
MMAxisNames(), 26
MMBlendToNewFont(), 26
MMChangeInstance(), 26
MMChangeWeight(), 26
MMInstanceNames(), 26
MMWeightedName(), 26
Move(), 27
MoveReference(), 27
MultipleEncodingsToReferences(), 27

NameFromUnicode(), 27
NearlyHvCps(), 27
NearlyHvLines(), 27
NearlyLines(), 27
New(), 27
NonLinearTransform(), 27

Open(), 27
Ord(), 27
Outline(), 27
OverlapIntersect(), 27

Paste(), 27
PasteInto(), 27
PasteWithOffset(), 27
PositionReference(), 28
PostNotice(), 28
Pow(), 28
PreloadCidmap(), 28
Print(), 28
PrintFont(), 28
PrintSetup(), 28
PrivateGuess(), 28

Quit(), 28

Rand(), 28
RandReal(), 28
ReadOtherSubrsFile(), 28
Real(), 28

37

Reencode(), 28
RemoveAllKerns(), 28
RemoveAllVKerns(), 28
RemoveAnchorClass(), 28
RemoveDetachedGlyphs(), 28
RemoveLookup(), 28
RemoveLookupSubtable(), 28
RemoveOverlap(), 28
RemovePosSub(), 29
RemovePreservedTable(), 29
RenameGlyphs(), 29
ReplaceCharCounterMasks(), 29
ReplaceCvtAt(), 29
ReplaceGlyphCounterMasks(), 29
ReplaceWithReference(), 29
Revert(), 29
RevertToBackup(), 29
Rotate(), 29
Round(), 29
RoundToCluster(), 29
RoundToInt(), 29

SameGlyphAs(), 29
Save(), 29
SaveTableToFile(), 29
Scale(), 29
ScaleToEm(), 29
Select(), 29
SelectAll(), 29
SelectAllInstancesOf(), 29
SelectBitmap(), 29
SelectByColor(), 29
SelectByColour(), 29
SelectByPosSub(), 29
SelectChanged(), 29
SelectFewer(), 29
SelectFewerSingletons(), 29
SelectGlyphsBoth(), 29
SelectGlyphsReferences(), 30
SelectGlyphsSplines(), 30
SelectHintingNeeded(), 30
SelectIf(), 30
SelectInvert(), 30
SelectMore(), 30
SelectMoreIf(), 30
SelectMoreSingletons(), 30
SelectMoreSingletonsIf(), 30
SelectNone(), 30
SelectSingletons(), 30
SelectSingletonsIf(), 30
SelectWorthOutputting(), 30

SetCharCnt(), 30
SetCharColor(), 30
SetCharComment(), 30
SetCharCounterMask(), 30
SetCharName(), 30
SetFeatureList(), 30
SetFondName(), 30
SetFontHasVerticalMetrics(), 30
SetFontNames(), 30
SetFontOrder(), 30
SetGasp(), 30
SetGlyphChanged(), 30
SetGlyphClass(), 30
SetGlyphColor(), 30
SetGlyphComment(), 30
SetGlyphCounterMask(), 30
SetGlyphName(), 30
SetGlyphTeX(), 30
SetItalicAngle(), 30
SetKern(), 30
SetLBearing(), 30
SetMacStyle(), 31
SetMaxpValue(), 31
SetOS2Value(), 31
SetPanose(), 31
SetPref(), 31
SetRBearing(), 31
SetTeXParams(), 31
SetTTFName(), 31
SetUnicodeValue(), 31
SetUniqueID(), 31
SetVKern(), 31
SetVWidth(), 31
SetWidth(), 31
Shadow(), 31
Shell(), 31
Simplify(), 31
Sin(), 31
SizeOf(), 31
Skew(), 31
SmallCaps(), 31
Sqrt(), 31
Strcasecmp(), 31
Strcasestr(), 31
Strftime(), 31
StrJoin(), 31
Strlen(), 32
Strrstr(), 32
Strskipint(), 32
StrSplit(), 31
Strstr(), 32

38

Strsub(), 32
Strtod(), 32
Strtol(), 32
SubstitutionPoints(), 32

Tan(), 32
ToLower(), 32
ToMirror(), 32
ToString(), 32
ToUpper(), 32
Transform(), 32
TypeOf(), 32

UCodePoint(), 32
Ucs4(), 32
UnicodeAnnotationFromLib(), 32
UnicodeBlockEndFromLib(), 32
UnicodeBlockNameFromLib(), 32
UnicodeBlockStartFromLib(), 32
UnicodeFromName(), 32
UnicodeNameFromLib(), 33
UnicodeNamesListVersion(), 33
UnlinkReference(), 33
Utf8(), 33

Validate(), 33
VFlip(), 33
VKernFromHKern(), 33

Wireframe(), 33
WorthOutputting(), 33
WritePfm(), 33
WriteStringToFile(), 33

39

	Title Page
	Copyright
	Contents
	Introduction
	Building FontAnvil
	From a version control checkout
	From a distribution package
	Special notes for Windows users
	Testing
	FontAnvil and Tsukurimashou

	Running FontAnvil
	Command-line options
	Shebang
	Interactive mode and readline

	Data model
	Fonts in memory
	Glyphs and slots
	Encodings
	The .notdef glyph
	The clipboard
	Look-up tables
	Syntax, semantics, round trips, and reproducibility

	The PE Script Language
	Basic syntax
	Data types, variables, and scope
	Operators
	Control structures

	Function and variable reference
	Built-in functions in FontForge and not in FontAnvil
	Built-in variables

	Licensing
	Index

